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Synopsis

A number of resin copolymers have been prepared by condensation of substituted aromatic
compounds with formaldehyde in the presence of different acid catalysts. The resin copolymers
were characterized by IR, thermal, X-ray diffraction, and by their reactivity ratios. The resins
were found to possess high thermal stability. Activation energies of resin degradation were
computed using the Freeman-Anderson method. The antifungal activities of several previously
synthesized resins were studied.

INTRODUCTION

Processable thermally-stable resins have wide-spread applications in the
aerospace industry.>® In recent years, resins prepared from substituted
benzoic acid-formaldehyde have attracted attention since they exhibit versa-
tile applications in the preparation of ion-exchange resins, fungicides, and
photographic materials. We have communicated the structure—property rela-
tionship of resins prepared from substituted benzoic acid and formaldehyde.!
This communication deals with the synthesis and characterization of resin
copolymers from p-chlorobenzoic acid, p-toluidine, p-nitrobenzoic acid,
o-hydroxyacetophenone, and o-chloroaniline with formaldehyde.

The antifungal activities of several previously synthesized resins' prepared
from o-toluic acid, p-toluic acid, p-chlorobenzoic acid, o-chlorobenzoic acid,
p-nitrobenzoic acid, p-toluidine, and o-chloroaniline with formaldehyde have
been screened.

EXPERIMENTAL

Apparatus and Methods of Characterization

Density and inherent viscosity of resin samples were determined by means
of a pycnometer ad Ubbelohde viscometer, respectively, in benzene at 30°C.
Infrared (IR) spectra were recorded on a Shimadzu (Japan) spectrometer on
KBr pellets. Thermogravimetric analyses (TGA) were made with a Hungarian
Mom Derivatograph of the Paulik-Erdey system at a heating rate of
10°C/min in air. Energy of activation for the degradation of resins was
calculated by using the Freeman and Anderson method.!? X-ray diffraction
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TABLE |
Physical Properties of Resin copolymers

Reactants (mol)
p-Chioro- Color Decompo- Inherent
benzoic p-Tolui- Formal- and sition Density  viscosity
Sample acid dine dehyde structure temp (°C) (g/cm®)  (dL/g)
1 0.075 0.025 0.2 Yellowish- 340 1.15 1.02
white
amorphous
2 0.065 0,035 0.2 Yellowish- — 116 1.02
white
amorphous
3 0.055 0.045 02 Yellowish- - 1.15 1,02
white
amorphous
4 0.045 0.055 0.2 Yeltowish- —_ —_ -
white
amorphous
5 0.035 0.065 0.2 Yellowish- — - 1.02
white
amorphous
6 0.025 0.075 0.2 Yellowigh- - 1.15 1.02
white
amorphous
p-Chioro  o-Hydroxy Formal-
benzoic aceto- dehyde
acid phenone
n 0.075 0.025 0.2 White and 325 1.26 1.08
amorphous
8 0.065 0.035 0.2 White and —_ 1.26 1.08
: . amorphous
9 0.055 0.045 0.2 White and - — —
amorphous
© 10 0.045 0.055 0.2 White and 326 - —
amorphous
11 0.035 0.065 02 White and 325 1.26 1.09
amorphous
12 0.025 0.075 0.2 White and — — —_
amorphous
p-Chloro- p-Nitro- Formal-
benzoic benzoic dehyde
acid acid
13 0.075 0.025 0.2 Yellowish- — 1.18 1.056
white
amorphous
14 0.065 0.035 0.2 Yetlowish- 320 1.20 1.05
white -
amorphous
15 0.055 0.045 0.2 Yellowish- -— 119 -—_
white
amorphous
16 0.045 0.055 0.2 Yeilowish- 320 1.20 —_
white
amorphous
17 0.035 0.065 0.2 Yellowish- — — 1.96
white
amorphous
18 0.025 0.075 0.2 Yellowish- 320 1.20 1.80
white
amorphous
19 o-Chloro. o-Hydroxy- Formal- Brick-red 355 1.26 1.09
aniline aceto- dehyde amorphous
phenone
0.055 0.045 0.2
20 p-Nitro-  o-Hydroxy- Formal- Yellowish- 325 — 1.09
benzoic aceto dehyde white
acid phenone amorphous
0.055 0.045 0.2
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patterns were recorded with a Dorn I (USSR) X-ray diffractometer with
Ni-filtered CuKa radiation. The Kelen and Tiidos linear graphical method!*
was used to evaluate the reactivity ratios of copolymers.

The fungicidal activity of the resins (at 1000 ppm concentration) was
evaluated following the literature method.!? Plant pathogenic organism used
were Brotrydepladia thiobromide, Nigrospora sp., Penicellium expansum,
Trichothesium sp., and Rhizopus nigricans.

Materials

Substituted aromatic compounds such as p-chlorobenzoic acid, p-nitro-
benzoic acid, etc. (E. Merck, India) and formaldehyde (BDH) were used. The
solvents used were of analytical grade and were further purified by standard
procedures.'?

Resin Synthesis

A mixture of p-chlorobenzoic acid (0.075 mol), p-toluidine (0.025 mol), and
formaldehyde (0.2 mol) in the presence of 4 mL of 10 N HCl was heated at
120°C in an oil bath for 5 h with stirring. The solid product was washed with
water, dried, and powdered. The powder product was washed with hot water
to remove unreacted monomer. The air-dried copolymer was Soxhlet
-extracted with ether to remove excess monomers and homopolymers, which
might be present along with the copolymer. For further purification, it was
dissolved in 8% NaOH and filtered. The product was precipitated by gradual
addition of 1:1 (v/v) concd. HCl and water with constant stirring. The
copolymer was filtered, washed with hot water, and dried in air. Similarly
other copolymers were prepared and are represented in Table L.

RESULTS AND DISCUSSION

The polycondensation reaction may be represented as

cl NH, cl NH,
- H, CH CH,
©) o ©) OO
CH, COOH CH

COOH s

The structure of the repeat unit of the copolymers was identified by IR
spectra (Figs. 1-3) and data are represented in Table II. The vibrations due to
the phenyl group were observed in the region 1550-1700 cm™!. The most
conspicuous absorption bands in the region 1350-1500 cm ™' were caused by
the methylene bending (scissoring) which denotes the existence of a number of
methylene bridges in the resin polymers. This was further evident from the
bands appearing in the range 1200-1300 cm ™!, which was caused by methyl-
ene bending (twisting and wagging modes). The rocking of the methylene
group in polymethylene chain was exhibited by the sharp band in the region
750-775 cm ~ . The vibration band between 1560 and 1700 cm ™! indicated the
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Fig. 1. Infrared absorption spectra of p-toluidine, p-chiorobenzoic acid, and formaldehyde
copolymer.
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Fig. 2. Infrared absorption spectra of p-nitrobenzoic acid, o-hydroxyacetophenone, and for-
maldehyde copolymer.
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Fig. 3. Infrared absorption spectra of p-chlorobenzoic acid, o-hydroxyacetophenone, and
formaldehyde copolymer.

presence of phenyl group in the repeat unit of copolymer. The bands in the
region 1400-1560 cm ™! were caused by the carbonyl group.

An X-ray diffraction diagram (Fig. 4) shows that the resin copolymer was
amorphous in nature as there was no sharp peak in the intensity versus
scattering angie (26) curve.

Table I shows the physical properties of the copolymers. The inherent
viscosity of copolymers was found to be moderately high, indicating that the
copolymers have moderately high molecular weight.

Thermal Behavior

The thermogravimetric curve of the copolymer (p-chlorobenzoic acid,
p-toluidine, and formaldehyde) is represented in Figure 5 showing the per-
centage of weight loss at various temperatures. TGA analysis indicates that
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Fig. 4. X-ray diffraction of p-toluidine—p-chiorobenzoic acid /formaldehyde resin copolymer,
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Fig. 5. System: PTPCBAF resin (PT:PCBA:F: = 0.025:0.075:0.2). Rate of heating 10°C/min;

weight 50 mg.

the resin undergoes 5% weight loss at about 125°C, 50% weight loss at 400°C,
and 95% weight loss at 600°C. Presumably a small amount of weight loss up to
125°C is caused by the loss of moisture or entrapped solvent present in the
resin. The copolymers appear to be fairly thermostable. The rate of maximum
decomposition becomes very fast up to 570°C with a weight loss of about 90%.

To determine the mechanism of decomposition, the kinetic parameters have
been evaluated using the Freeman and Anderson method. This method
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Fig. 6. Typical Freeman and Anderson plot for determination of the activation energy of
PTPCBAF resin. PT:PCBA:F: = 0.025:0.075:0.2.

involves the evaluation of quantities A log(—dw/dt) and A log W correspond-
ing to a constant difference in 1/7T. According to

— log W — — [ 2 1
dt )‘” %8 T 2303R (T) (1)

A log(

The slope of the plot of A log(—dw/dt) vs. A log W gives n, the order of the
reaction, and the intercept gives E*, the energy of .activation. Figure 6 shows
the plot of —dw/dt and W against (1/T) - (dw/dt), which represents the
change in weight loss for every 2 min. From this plot the change in weight loss
per 0.05 of 1/T has been evaluated and from the tabulation A log(—dw/d?) is
plotted against A log W (Fig. 7). The energy of activation (£*) is computed to
be 9.22k cal /mol.

Reactivity Ratios
Recently, Kelen and Tiidés have developed a linear graphical method for
determining the reactivity ratios of copolymers.!! The compositions of the
copolymers were determined by electrometric titration technique in non-aque-

ous media,!* together with halogen estimation of the copolymer by the
Volhard method.'® The linear graphical method of Kelen and Tiidés is

[ 25

where transformed variables are

G X(Y-1)
T2+ F (af + X?)
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Fig. 7. Typical Freeman and Anderson plot for determination of the activation energy ( E*) of
PTPCBAF resin.
and

F X?
a+F aY+ X?

¢= (3)
where a denotes an arbitary constant (a > 0), the most feasible choice of the
a value will be dealt with later on. The variable £ cannot take any positive
value, only those in the interval (0, 1). Thus plotting % values, calculated from
the experimental data against §{, we obtain a straight line which when
extrapolated to £ = 0 and £ = 1, gives —r,/a and r, (both as intercept).

The reactivity ratio r, obtained for the halogen-substituted benzoic acid,
that is, p-chlorobenzoic acid (PCBA), during the copolymerization with
p-toluidine (PT), o-hydroxyacetophenone (OHAC), o-chioroaniline (OCA),
respectively, are shown in Table III and Figures 8-10. The reciprocal of the
reactivity ratio r, expresses the relative strength of monomers when they are
copolymerized with a given monomer. When PT, OHAC, and OCA (comono-
mers) are copolymerized with PCBA, the reactivity 1/r, has the following
order:

(—1-) PT > (i) OCA > (i) OHAC
181 r n

Thus it may be concluded that the linear graphical method can suitably be
applied for determining the reactivity ratios of the copolymers. Also the
relative reactivity of these monomers depends on the combination of two
effects: (i) opposite polarization caused by the electron-donating or electron-
withdrawing substituents present in the common monomer and (ii) the rela-
tive degree of their resonance stabilization.
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Fig. 8. Kelen-Tiidés plot for the copolymerization of PCBA and PT.
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Fig. 9. Kelen-Tiidds plot for the copolymerization of OHAC and PCBA.
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Fig. 10. Kelen—Tid3s plot for the copolymerization of p-chlorobenzoic acid and o-chloro-
aniline.
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Antifungal Activity
The percentage of inhibition of the growth of several fungi such as Peni-
cillium exponsum, Botrydepladia thio-bromide, Nigrospora species,
Trichthesium species and Rhizopus nigricans by polymer samples is given in
Table IV. Qut of seven polymers, polymers 3, 6, and 7 are superior to the

TABLE IV
Antifungal Activity of Resins

Zones of inhibition at 1000 ppm (%) for Fungi
Penicillium  Botrydepladia  Nigrospora Trichothe Rhizopus

Sample Resins expansum thiobromide species species nigricans

1 o-Toluic acid 85 80 100 100 75
formaldehyde

2 p-Toluic acid 100 100 50 85 95
formaldehyde

3 p-Chlorobenzoic acid 100 100 100 95 90
formaidehyde

4 o-Chlorobenzoic acid 100 100 78 100 85
formaldehyde

5 p-Nitrobenzoic acid 100 100 85 80 90
formaldehyde

6 p-Toluidine 90 95 100 100 100
formaldehyde

7 o-Chlioroaniline 95 95 100 80 95

formaldehyde
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others, as the percentage of inhibition of zones was above 90 against all fungi
except for o-chloroaniline and formaldehyde resin against Tricho-thesium
species. The growth of fungus Nigrospora species was completely inhibited by
these resins, whereas the growth of Botrydepladia thiobromide was com-
pletely inhibited by resin 3 and 95% of inhibition in the case of resins 6 and 7.
It is interesting to note that the growth of Nigrospora species was less
inhibited (50%) against resin 2 and the growth of Rhizopus nigricans was also
less inhibited (75%) against resin 1. The reason for very low activity in the
above two cases might be caused by the detoxyfication of the enzymes
produced by the Nigrospora species and Rhizopus nigricans.

The authors are thankful to CSIR, New Delhi for providing a Senior Research Fellowship to
one of the authors (APD).
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