Synthetic Resins. V. Preparation and Properties of Substituted Benzoic Acid, Hydroxyacetophenone and Aniline / Formaldehyde Resins

ANIL P. DAS, PADMA L. NAYAK, and SUBASINI LENKA, Laboratory of Polymers and Fibers, Department of Chemistry, Ravenshaw College, Cuttack 753 003, Orissa, India

Synopsis

A number of resin copolymers have been prepared by condensation of substituted aromatic compounds with formaldehyde in the presence of different acid catalysts. The resin copolymers were characterized by IR, thermal, X-ray diffraction, and by their reactivity ratios. The resins were found to possess high thermal stability. Activation energies of resin degradation were computed using the Freeman-Anderson method. The antifungal activities of several previously synthesized resins were studied.

INTRODUCTION

Processable thermally-stable resins have wide-spread applications in the aerospace industry.²⁻⁹ In recent years, resins prepared from substituted benzoic acid-formaldehyde have attracted attention since they exhibit versatile applications in the preparation of ion-exchange resins, fungicides, and photographic materials. We have communicated the structure-property relationship of resins prepared from substituted benzoic acid and formaldehyde.¹ This communication deals with the synthesis and characterization of resin copolymers from *p*-chlorobenzoic acid, *p*-toluidine, *p*-nitrobenzoic acid, *o*-hydroxyacetophenone, and *o*-chloroaniline with formaldehyde.

The antifungal activities of several previously synthesized resins¹ prepared from *o*-toluic acid, *p*-toluic acid, *p*-chlorobenzoic acid, *o*-chlorobenzoic acid, *p*-nitrobenzoic acid, *p*-toluidine, and *o*-chloroaniline with formaldehyde have been screened.

EXPERIMENTAL

Apparatus and Methods of Characterization

Density and inherent viscosity of resin samples were determined by means of a pycnometer ad Ubbelohde viscometer, respectively, in benzene at 30° C. Infrared (IR) spectra were recorded on a Shimadzu (Japan) spectrometer on KBr pellets. Thermogravimetric analyses (TGA) were made with a Hungarian Mom Derivatograph of the Paulik-Erdey system at a heating rate of 10° C/min in air. Energy of activation for the degradation of resins was calculated by using the Freeman and Anderson method.¹⁰ X-ray diffraction

Journal of Applied Polymer Science, Vol. 34, 2139-2150 (1987)

^{© 1987} John Wiley & Sons, Inc.

	F	Reactants (mol)				
Sample	<i>p</i> -Chloro- benzoic acid	p-Tolui- dine	Formal- dehyde	Color and structure	Decompo- sition temp (°C)	Density (g/cm ³)	Inherent viscosity (dL/g)
	0.075	0.095		Vallawish	240	1 15	1.00
2	0.075	0.025	0.2	white amorphous Yellowish	340	1.15	1.02
-	0.000		0.2	white amorphous			1.04
3	0.055	0.045	0.2	Yellowish- white	-	1.15	1.02
4	0.045	0.055	0.2	amorphous Yellowish- white	-	-	-
5	0.035	0.065	0.2	amorphous Yellowish- white	-	-	1.02
6	0.025	0.075	0.2	amorphous Yellowish- white amorphous	-	1.15	1.02
	<i>p</i> -Chloro benzoic	o-Hydroxy aceto-	Fo rm al- dehyde				
	acid	phenone					
7	0.075	0.025	0.2	White and amorphous	325	1.26	1.08
8	0.065	0.035	0.2	White and amorphous	-	1.26	1.09
9	0.055	0.045	0.2	White and	-	-	-
· 10	0.045	0.055	0.2	White and amorphous	326	-	-
11	0.035	0.065	0.2	White and amorphous	325	1.26	1.09
12	0.025	0.075	0.2	White and amorphous	_	-	-
	<i>p</i> -Chioro- benzoic acid	<i>p</i> -Nitro- benzoic acid	Formal- dehyde				
13	0.075	0.025	0.2	Yellowish- white	-	1.15	1.05
14	0.065	0.035	0.2	amorphous Yellowish- white	320	1.20	1.05
15	0.055	0.045	0.2	Yellowish- white	-	1.19	
16	0.045	0.055	0.2	Yellowish- white amorphous	320	1.20	-
17	0.035	0.065	0.2	Yellowish white amorphous	-		1.96
18	0.025	0.075	0.2	Yellowish- white amorphous	320	1.20	1.80
19	o-Chloro- aniline	o-Hydroxy- aceto- phenone	Formal- dehyde	Brick-red amorphous	355	1.26	1.09
	0.055	0.045	0.2				
20	<i>p</i> -Nitro- benzoic acid	o-Hydroxy- aceto phenone	Formal- dehyde	Yellowish- white amorphous	325	-	1.09
	0.055	0.045	0.2				

TABLE I Physical Properties of Resin copolymers

patterns were recorded with a Dorn I (USSR) X-ray diffractometer with Ni-filtered CuK α radiation. The Kelen and Tüdös linear graphical method¹¹ was used to evaluate the reactivity ratios of copolymers.

The fungicidal activity of the resins (at 1000 ppm concentration) was evaluated following the literature method.¹² Plant pathogenic organism used were Brotrydepladia thiobromide, Nigrospora sp., Penicellium expansum, Trichothesium sp., and Rhizopus nigricans.

Materials

Substituted aromatic compounds such as *p*-chlorobenzoic acid, *p*-nitrobenzoic acid, etc. (E. Merck, India) and formaldehyde (BDH) were used. The solvents used were of analytical grade and were further purified by standard procedures.¹³

Resin Synthesis

A mixture of *p*-chlorobenzoic acid (0.075 mol), p-toluidine (0.025 mol), and formaldehyde (0.2 mol) in the presence of 4 mL of 10 N HCl was heated at 120°C in an oil bath for 5 h with stirring. The solid product was washed with water, dried, and powdered. The powder product was washed with hot water to remove unreacted monomer. The air-dried copolymer was Soxhlet -extracted with ether to remove excess monomers and homopolymers, which might be present along with the copolymer. For further purification, it was dissolved in 8% NaOH and filtered. The product was precipitated by gradual addition of 1:1 (v/v) concd. HCl and water with constant stirring. The copolymer was filtered, washed with hot water, and dried in air. Similarly other copolymers were prepared and are represented in Table I.

RESULTS AND DISCUSSION

The polycondensation reaction may be represented as

The structure of the repeat unit of the copolymers was identified by IR spectra (Figs. 1–3) and data are represented in Table II. The vibrations due to the phenyl group were observed in the region $1550-1700 \text{ cm}^{-1}$. The most conspicuous absorption bands in the region $1350-1500 \text{ cm}^{-1}$ were caused by the methylene bending (scissoring) which denotes the existence of a number of methylene bridges in the resin polymers. This was further evident from the bands appearing in the range $1200-1300 \text{ cm}^{-1}$, which was caused by methylene bending (twisting and wagging modes). The rocking of the methylene group in polymethylene chain was exhibited by the sharp band in the region $750-775 \text{ cm}^{-1}$. The vibration band between $1560 \text{ and } 1700 \text{ cm}^{-1}$ indicated the

Fig. 1. Infrared absorption spectra of *p*-toluidine, *p*-chlorobenzoic acid, and formaldehyde copolymer.

Fig. 2. Infrared absorption spectra of *p*-nitrobenzoic acid, *o*-hydroxyacetophenone, and formaldehyde copolymer.

Fig. 3. Infrared absorption spectra of *p*-chlorobenzoic acid, *o*-hydroxyacetophenone, and formaldehyde copolymer.

presence of phenyl group in the repeat unit of copolymer. The bands in the region $1400-1560 \text{ cm}^{-1}$ were caused by the carbonyl group.

An X-ray diffraction diagram (Fig. 4) shows that the resin copolymer was amorphous in nature as there was no sharp peak in the intensity versus scattering angle (2θ) curve.

Table I shows the physical properties of the copolymers. The inherent viscosity of copolymers was found to be moderately high, indicating that the copolymers have moderately high molecular weight.

Thermal Behavior

The thermogravimetric curve of the copolymer (*p*-chlorobenzoic acid, *p*-toluidine, and formaldehyde) is represented in Figure 5 showing the percentage of weight loss at various temperatures. TGA analysis indicates that

	ŏ
	Resin
	of
	Spectra
	³ P
E	Infrare
B	7
H	Ĕ
AF	7
E	E
	Bands (
	ption
	Absor
	of
	nent

	Assign	ment of Abs	orption Ban	ds (cm ⁻¹) for Inf	rared Spectra c	of Resin Copolym	lers		
		Substi aromat	ituted ic ring		CH ₂			C00 ⁻ v	ibration
	Phenyl vibration	CH plane	CH out of plane	Scissoring	Twisting or wagging	Rocking of poly- methylene chain	CO stretch	Assymetric	Symmetric
<i>p</i> -Nitrobenzoic acid, o-hydroxyacetophenone,	1600 1540	1610 1110	720 760	0641	1275	760	1690	1520	1400 1420
and formaldehyde		1125 1180	800						1460
p-Chlorobenzoic acid,	1500	1010	760	1400	1290	780	1680	1495	1410
o-hydroxyacetophenone, and formaldehyde	1580	0601	780	1410	1295				1400
3			1125	810	1460				
		1195							
p-'Foluic acid,	1560	1095	700	1410	1290	700	1690	1495	1410
p-chlorobenzoic acid,	1595	1100	805		1295			1500	
and formaldehyde						:			

SYNTHETIC RESINS. V

2143

Fig. 4. X-ray diffraction of p-toluidine-p-chlorobenzoic acid/formaldehyde resin copolymer.

Fig. 5. System: PTPCBAF resin (PT:PCBA:F: = 0.025:0.075:0.2). Rate of heating 10°C/min; weight 50 mg.

the resin undergoes 5% weight loss at about 125°C, 50% weight loss at 400°C, and 95% weight loss at 600°C. Presumably a small amount of weight loss up to 125°C is caused by the loss of moisture or entrapped solvent present in the resin. The copolymers appear to be fairly thermostable. The rate of maximum decomposition becomes very fast up to 570°C with a weight loss of about 90%.

To determine the mechanism of decomposition, the kinetic parameters have been evaluated using the Freeman and Anderson method. This method

Fig. 6. Typical Freeman and Anderson plot for determination of the activation energy of PTPCBAF resin. PT:PCBA:F: = 0.025:0.075:0.2.

involves the evaluation of quantities $\Delta \log(-dw/dt)$ and $\Delta \log \overline{W}$ corresponding to a constant difference in 1/T. According to

$$\Delta \log\left(\frac{-dw}{dt}\right) = n\Delta \log \overline{W} - \frac{E^*}{2.303 R} \Delta\left(\frac{1}{T}\right) \tag{1}$$

The slope of the plot of $\Delta \log(-dw/dt)$ vs. $\Delta \log \overline{W}$ gives *n*, the order of the reaction, and the intercept gives E^* , the energy of activation. Figure 6 shows the plot of -dw/dt and *W* against $(1/T) \cdot (dw/dt)$, which represents the change in weight loss for every 2 min. From this plot the change in weight loss per 0.05 of 1/T has been evaluated and from the tabulation $\Delta \log(-dw/dt)$ is plotted against $\Delta \log \overline{W}$ (Fig. 7). The energy of activation (E^*) is computed to be 9.22k cal/mol.

Reactivity Ratios

Recently, Kelen and Tüdös have developed a linear graphical method for determining the reactivity ratios of copolymers.¹¹ The compositions of the copolymers were determined by electrometric titration technique in non-aqueous media,¹⁴ together with halogen estimation of the copolymer by the Volhard method.¹⁵ The linear graphical method of Kelen and Tüdös is

$$\eta = \left(r_1 + \frac{r_2}{\alpha}\right)\xi - \frac{r^2}{\alpha}$$
(2)

where transformed variables are

$$\eta = \frac{G}{\alpha + F} = \frac{X(Y-1)}{(\alpha Y + X^2)}$$

Fig. 7. Typical Freeman and Anderson plot for determination of the activation energy (E^*) of PTPCBAF resin.

and

$$\xi = \frac{F}{\alpha + F} = \frac{X^2}{\alpha Y + X^2} \tag{3}$$

where α denotes an arbitrary constant ($\alpha > 0$), the most feasible choice of the α value will be dealt with later on. The variable ξ cannot take any positive value, only those in the interval (0, 1). Thus plotting η values, calculated from the experimental data against ξ , we obtain a straight line which when extrapolated to $\xi = 0$ and $\xi = 1$, gives $-r_2/\alpha$ and r_1 (both as intercept).

The reactivity ratio r_1 obtained for the halogen-substituted benzoic acid, that is, *p*-chlorobenzoic acid (PCBA), during the copolymerization with *p*-toluidine (PT), *o*-hydroxyacetophenone (OHAC), *o*-chloroaniline (OCA), respectively, are shown in Table III and Figures 8–10. The reciprocal of the reactivity ratio r_1 expresses the relative strength of monomers when they are copolymerized with a given monomer. When PT, OHAC, and OCA (comonomers) are copolymerized with PCBA, the reactivity $1/r_1$ has the following order:

$$\left(\frac{1}{r_1}\right)$$
 PT > $\left(\frac{1}{r_1}\right)$ OCA > $\left(\frac{1}{r_1}\right)$ OHAC

Thus it may be concluded that the linear graphical method can suitably be applied for determining the reactivity ratios of the copolymers. Also the relative reactivity of these monomers depends on the combination of two effects: (i) opposite polarization caused by the electron-donating or electronwithdrawing substituents present in the common monomer and (ii) the relative degree of their resonance stabilization.

	r ₂ /a	0.45		0.56	0.45
	5	0.22		0.44	0.26
	•••	0.231 0.297 0.437 0.437	0.769	0.155 0.290 0.441 0.517 0.639 0.741	0.260 0.286 0.425 0.547 0.642 0.797
	F	- 0.476 - 0.230 - 0.143	0.199	- 0.218 - 0.203 - 0.139 0.094 0.243 0.433	- 0.636 - 0.305 - 0.243 - 0.123 0.045 0.093
	ਰ	1.179		1.142	1.705
Reactivity Ratios of Copolymerization System	Ratio of mole fraction of monomer in copolymer Y = dM_1/dM_2	0.314 0.583 0.732 0.232	2.294 2.294	0.531 0.622 0.743 1.221 1.706 2.753	0.185 0.426 0.532 0.724 1.130 1.348
	Ratio of mole fraction of monomer in feed $x - M_1/M_2$	0.333 0.539 0.818 1 200	1.857 3.0	0.333 0.539 0.818 1.222 1.857 3.0	0.333 0.539 0.518 1.222 1.867 3.0
	composition al) PCBA	1.533 1.204 1.196	0.856 0.681 PCBA	1.402 1.381 1.285 0.577 0.577	PCBA 1.760 1.505 1.325 1.126 0.986 0.835
	Copolymer o (m	0.481 0.701 0.875	1.342 1.562 OHAC	0.745 0.859 0.955 1.109 1.335 1.589	PNBA 0.324 0.598 0.705 0.815 1.115 1.1126
	aposition ol) PCBA	0.076 0.066 0.065	0.035 0.025 PCBA	0.075 0.065 0.065 0.045 0.035 0.035	PCBA 0.075 0.065 0.045 0.035 0.035
	Feed con (m)	0.025 0.035 0.045	0.0066 0.076 OHAC	0.025 0.036 0.045 0.045 0.065 0.065	PNBA 0.025 0.035 0.045 0.065 0.066 0.076
	Sample	- 00 -	e co co e	0.51 + 31 - 13	ee er # 10 ⊨

TABLE III

SYNTHETIC RESINS. V

2147

Fig. 8. Kelen-Tüdös plot for the copolymerization of PCBA and PT.

Fig. 9. Kelen-Tüdös plot for the copolymerization of OHAC and PCBA.

Fig. 10. Kelen-Tüdös plot for the copolymerization of p-chlorobenzoic acid and o-chlorobenzoic.

Antifungal Activity

The percentage of inhibition of the growth of several fungi such as *Penicillium exponsum*, *Botrydepladia thio-bromide*, *Nigrospora* species, *Trichthesium* species and *Rhizopus nigricans* by polymer samples is given in Table IV. Out of seven polymers, polymers 3, 6, and 7 are superior to the

TABLE IV
Antifungal Activity of Resins

		Zones of inhibition at 1000 ppm (%) for Fungi								
	Sample Resins	Penicillium expansum	Botrydepladia thiobromide	Nigrospora species	Trichothe species	Rhizopus nigricans				
1	o-Toluic acid formaldehyde	85	80	100	100	75				
2	<i>p</i> -Toluic acid formaldehyde	100	100	50	85	95				
3	<i>p</i> -Chlorobenzoic acid formaldehyde	100	100	100	95	90				
4	o-Chlorobenzoic acid formaldehyde	,100	100	78	100	85				
5	<i>p</i> -Nitrobenzoic acid formaldehyde	100	100	85	80	90				
6	<i>p</i> -Toluidine formaldehyde	90	95	100	100	100				
7	o-Chloroaniline formaldehyde	95	95	100	80	95				

DAS, NAYAK, AND LENKA

others, as the percentage of inhibition of zones was above 90 against all fungi except for o-chloroaniline and formaldehyde resin against *Tricho-thesium* species. The growth of fungus *Nigrospora* species was completely inhibited by these resins, whereas the growth of *Botrydepladia thiobromide* was completely inhibited by resin 3 and 95% of inhibition in the case of resins 6 and 7. It is interesting to note that the growth of *Nigrospora* species was also less inhibited (50%) against resin 2 and the growth of *Rhizopus nigricans* was also less inhibited (75%) against resin 1. The reason for very low activity in the above two cases might be caused by the detoxyfication of the enzymes produced by the *Nigrospora* species and *Rhizopus nigricans*.

The authors are thankful to CSIR, New Delhi for providing a Senior Research Fellowship to one of the authors (APD).

References

1. Anil P. Das, P. L. Nayak, and S. Lenka, J. Appl. Polym. Sci., 3, 4619 (1985).

2. M. M. Koton, J. Polym. Sci., 52, 97 (1961).

3. P. T. Wallenberger, Angew. Makromol. Chem., 3, 453 (1964).

4. C. R. Thomas, Br. Plast., 38, 36 (1965).

5. I. D. Aitken, R. Seldon, and G. B. Stapleton, Br. Plast., 36, 662 (1961); 35, 39 (1962).

6. J. K. Stile, Forts. Hochpolym. Forsch., 3, 48 (1961).

7. V. V. Korshak and E. S. Krongauz, Usp. Khim., 34, 1409 (1964); Russ. Chem. Rev., 609 (1964).

8. K. Pravin, Trans. J. Plast. Inst., 31, 131 (1963).

9. V. V. Korshak and S. V. Vinogradova, Usp. Khim., 30, 421 (1961); Russ. Chem. Rev., 171 (1961).

10. D. A. Anderson and E. S. Freeman, J. Polym. Sci., 54, 253 (1961).

11. T. Kelen and F. Tüdös, J. Makromol. Sci. Chem. Ed., 9, 1 (1975).

12. H. S. Patel and D. Daniel, J. Makromol. Sci., Chem. Ed., A20, 453 (1983).

13. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, *Purification of Laboratory Chemicals*, 2nd ed., Pergamon, New York, 1980.

14. S. K. Chatterjee and N. Dattagupta, Br. Polym. J., 6, 293 (1974).

15. A. I. Vogel, Quantitative Organic Analysis, Longmans, Green, London, 1964.

Received August 25, 1986

Accepted February 23, 1987

2150